Climate Modelling Informing the Politics of the Earth

Jean-Pascal van Ypersele
Université catholique de Louvain
Former IPCC Vice-Chair
Twitter: @JPvanYpersele

Politics of the Earth International Summer School, Sciences Po, Paris, 6 September 2016

Thanks to the Government of Wallonia and to my team at the Université catholique de Louvain for their support

Plan

- Where do I speak from?
- The IPCC
- Policy relevance of the carbon cycle
- Some sources of uncertainty
- The « carbon budget »
- Conclusions

- 1957 : Born: IGY, Sputnik, Keeling curve CO2 Mauna Loa
- 1972 : Astronomy / Environment : Limits to Growth at school, 3nd Earth Day, creation of UNEP
- 1973 : Total solar eclipse in Kenya : astronomy, but drought as well
- 1979 : First World Climate Conference in Geneva : Science and Policy

- 1980 : Physics Master, EBM and CO₂ (Apartheid, development, UNEP, desertification)
- 1982 : I meet Steve Schneider, NCAR : sciencepolicy interface, nuclear winter, climate science communication
- 1986 : Tchernobyl : the day I came back from NCAR after Ph.D.!
- 1992 : Rio Summit, UN Conf on Env & Development, Council on Sustainable Development

- 1995 : IPCC WGI Final Plenary in Madrid ; Famous sentence « The balance of evidence suggests a discernible influence of human activities on climate »
- 1997 : Kyoto
- 1998: IPCC author with Steve Schneider
- 2002 : IPCC Bureau (for 13 years) (and UCL prof, Interdisciplinary Master in Science & Management of the Environment, until now)

- 2008 : IPCC Vice-Chair (until 2015),
- 2010 Copenhagen, Himalaya error, IPCC-bashing/ reform
- 2013 : First Interdisciplinary Symposium on Sustainable development in Belgium
- 2015 : Candidate IPCC Chair (56 countries voted for me) / book about my turbulent experiences / COP21
- 2016 : Lubricating the climate-science policy interface/ decarbonizing my way of life /IPCC back to basics
 Jean-Pascal van Ypersele

(vanyp@climate.be)

Publié chez De Boeck supérieur, octobre 2015

Agarwal et al., 1999

9 Planetary Boundaries; 3 crossed already

Source: Rockström et al 2009

Children from Machakos (Kenya), April 2015

Why the IPCC?

Established by WMO and UNEP in 1988

to provide policy-makers with an objective source of information about

- causes of climate change,
- potential environmental and socio-economic impacts,
- possible response options (adaptation & mitigation).

WMO=World Meteorological Organization
UNEP= United Nations Environment
Programme

None So Deaf

Key messages from the IPCC WG1 Report (1)

Certain:

- Emissions resulting from human activities are substantially increasing the atmospheric concentrations of the greenhouse gases: CO2, CH4, CFC, and N2O
- Calculated with confidence:
 - Under the business as usual scenario, temperature will increase by about 3°C by 2100 (uncertainty range: 2 to 5°C), and sea level will increase by 60 cm (uncertainty range: 30 to 100 cm)

Key messages from the IPCC WG1 Report (2)

- With an increase in the mean temperature, episodes of high temperature will most likely become more frequent
- Rapid changes in climate will change the composition of ecosystems; some species will be unable to adapt fast enough and will become extinct.
- Long-lived gases (CO2, N2O and CFCs) would require immediate reduction in emissions from human activities of over 60% to stabilise their concentration at today's Jean-Pascal van Ypersele (vanypersele@astr.ucl.ac.be)

Oops...

... this was from the IPCC first assessment report, published 26 years ago (1990)!

Was anybody really listening?

When does this quote date from?

"It may require only a very small percentage of change in the planet's balance of energy to modify average temperatures by 2°C. Downward, this is another ice age; upward, a return to an ice-free age. In either case, the effects are global and catastrophic. "

When does this quote date from?

"... The sum of all likely fossil-fuel demands in the early decades of the [21st] century might ... greatly increase the emission of carbon dioxide into the atmosphere and by doing so bring up average surface temperature uncomfortably close to that rise of 2°C which might set in motion the long-term warming up of the planet."

Barbara Ward & René Dubos, 1972

The concentrations of CO_2 have increased to levels unprecedented in at least the last 800,000 years.

Carbon cycle: unperturbed fluxes

Units: GtC (billions tons of carbon) or GtC/year (multiply by 3.7 to get GtCO₂)

vanyp@climate.be

Carbon cycle: perturbed by human activities

(numbers for the decade 1990-1999s, based on IPCC AR4)

Units: GtC (billions tons of carbon) or GtC/year

Stocks!

Oceans are Acidifying Fast

Changes in pH over the last 25 million years

"Today is a rare event in the history of the World"

- It is happening now, at a speed and to a level not experienced by marine organisms for about 60 million years
- Mass extinctions linked to previous ocean acidification events
- Takes 10,000's of years to recover

The carbon cycle is policy-relevant

- CO₂ accumulates in the atmosphere as long as human emissions are larger than the natural absorption capacity
- Historical emissions from developed countries therefore matter for a long time
- As warming is function of cumulated emissions, the carbon « space » is narrowing fast (to stay under 1.5 or 2°C warming)

Climatic Change: Are We on the Brink of a Pronounced Global Warming? (Broecker, 1975)

Table 1. Reconstruction and prediction of atmospheric CO₂ contents based on fuel consumption data.

Year	Chemical fuel CO ₂ (× 10 ¹⁶ g)	Excess atmo- spheric CO ₂ * (× 10 ¹⁶ g)	Excess atmospheric CO ₂ (%)	Excess atmo- spheric CO ₂ (ppm)	CO ₂ content of the atmosphere† (ppm)	Global temper- ature increase‡ (°C)
1900	3.8	1.9	0.9	2	295	0.02
1910	6.3	3.1	1.4	4	297	.04
1920	9.7	4.8	2.2	6	299	.07
1930	13.6	6.8	3.1	9	302	.09
1940	17.9	8.9	4.1	12	305	.11
1950	23.3	11.6	5.3	16	309	.15
1960	31.2	15.6	7.2	21	314§	.21
1970	44.0	22.0	10.2	29	322§	.29
1980	63	31	14	42	335	.42
1990	88	44	20	58	351	.58
2000	121	60	28	80	373	.80
2010	167	83	38	110	403	1.10

^{*}On the assumption that 50 percent of the CO₂ produced by the burning of fuel remains in the atmosphere. †The preindustrial atmospheric partial pressure of CO₂ is assumed to be 293 ppm. ‡Assumes a 0.3°C global temperature increase for each 10 percent rise in the atmospheric CO₂ content. §Value observed on Hawaii for 1960, 314 ppm; value for 1970, 322 ppm (8). ||Post-1972 growth rate taken to be 3 percent per year.

Once upon a time, a US climatologist said this in Belgium (1):

- Net accumulation of carbon as CO₂ in the atmosphere is about 3 gigatons per year. There is no quantitative explanation why the annual accumulation is 3 GtC when emissions are 8 GtC.
- There is no reason to expect that existing trends between emissions and atmospheric buildup will continue in the future.

Once upon a time, a US climatologist said this in Belgium (2):

- Projections are based on unverified models of natural and social science.
- Results from climate models are known to be wrong.
- It is impossible today to project future impacts of climate change.
- Progress to advance the science will require major effort and many years of study.

- This US climatologist was a science advisor to Exxon-Mobil, with a Ph.D in astrophysics, and he knew very well what he was doing: sowing doubt
- He was speaking to the Belgian delegation about to leave for the final negotiations of the Kyoto Protocol
- This was at a lunch event organised by the Belgian Federation of the Oil Industry (Fédération pétrolière)

Uncertainty?

Example from IPCC AR5: Between (1986-2005) and (2081-2100), the "likely" change projected in global mean surface air temperature ranges from 0.3 to 4.8 °C:

Sources of uncertainty about future climatic change - Two main reasons:

- Uncertainty about how much climate forcing humans will do, principally through fossil fuel consumption. - Emission scenarios (Depends on political decisions, economic events, technical innovation and diffusion.)
- Uncertainty about how the climate system will respond to climate forcing by humans **Climate Sensitivity**.(Depends on natural processes.)

Concentration and emission scenarios

IPCC AR5 WGI TS, Fig TS19

(Equilibrium) Climate sensitivity

Steady state change in the annual global mean surface temperature following a doubling of the CO₂ concentation

$1.5^{\circ}C < \Delta T < 4.5^{\circ}C$

(likely range, high confidence, same as in 1990...)

Only the lowest (RCP2.6) scenario maintains the global surface temperature increase above the pre-industrial level to less than 2°C with at least 66% probability

Sea level due to continue to increase

A Progression of Understanding: Greater and Greater Certainty in Attribution

AR1 (1990): "unequivocal detection not likely for a decade"

AR2 (1995): "balance of evidence suggests discernible human influence"

AR3 (2001): "most of the warming of the past 50 years is **likely** (odds 2 out of 3) due to human activities"

AR4 (2007): "most of the warming is **very likely** (odds 9 out of 10) due to greenhouse gases"

Effects of a 1 m Sea-Level Rise in the Nile Delta (>10 million people live at less than 1 m a.s.l.)

(Time 2001)

Risk = Hazard x Vulnerability x Exposure (Katrina flood victim)

AP Photo - Lisa Krantz (http://lisakrantz.com/hurricane-katrina/zspbn1k4cn17phidupe4f9x5t1mzdr)

AR5, WGII, Box SPM.1 Figure 1

Cumulative emissions of CO₂ largely determine global mean surface warming by the late 21st century and beyond.

IPCC AR5 Working Group I

Climate Change 2013: The Physical Science Basis

Fig. SPM.10

Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions.

The window for action is rapidly closing

65% of the carbon budget compatible with a 2°C goal is already used NB: this is with a probability greater than 66% to stay below 2°C

INTERGOVERNMENTAL PANEL ON Climate change

AR5 WGI SPM

Stabilization of atmospheric concentrations requires moving away from the baseline – regardless of the mitigation goal.

Intended Nationally Determined Contributions (INDCs)

UN emissions gap report

Conclusions

- Knowledge about the climate system is still imperfect
- But what we knew 40 years ago was more than enough to act
- A key problem is short-termism among political leaders

Humanity still has the choice

Change in average surface temperature (1986–2005 to 2081–2100)

AR5 WGI SPM

Trying to be coherent...

Useful links:

- www.ipcc.ch : IPCC (reports and videos)
- www.climate.be/vanyp : e.g., most of my slides
- www.skepticalscience.com: excellent responses to contrarians arguments
- On Twitter: @JPvanYpersele and @IPCC_CH