The Challenges and Opportunities of Climate Change

An Overview Based on the IPCC Fifth Assessment Report (AR5)

Jean-Pascal van Ypersele IPCC Vice-Chair, Candidate Chair Twitter: @JPvanYpersele

NSW Parliament & business breakfast, Sydney, Australia, 13 & 14 August 2015

Thanks to the Belgian Federal Science Policy Office (BELSPO) and the Ministry of Foreign Affairs, and to my team at the Université catholique de Louvain for their support

Why the IPCC (Intergovernmental Panel on Climate Change)? Established by WMO and UNEP in 1988

to provide policy-makers with an objective source of information about

- causes of climate change,
- potential environmental and socio-economic impacts,
- possible response options (adaptation & mitigation).

WMO=World Meteorological Organization
UNEP= United Nations Environment
Programme

Key messages from IPCC AR5

- Human influence on the climate system is clear
- Continued emissions of greenhouse gases will increase the likelihood of severe, pervasive and irreversible impacts for people and ecosystems
- While climate change is a threat to sustainable development, there are many opportunities to integrate mitigation, adaptation, and the pursuit of other societal objectives
- Humanity has the means to limit climate change and build a more sustainable and resilient future

The concentrations of CO_2 have increased to levels unprecedented in at least the last 800,000 years.

Sources of emissions

Energy production remains the primary driver of GHG emissions

24% Agriculture, forests and other land uses

21% Industry

14% Transport 6.4%
Building
Sector

2010 GHG emissions

AR5 WGIII SPM

Figure SPM.1a Surface Temperature

Observed globally averaged combined land and ocean surface temperature anomaly 1850-2012

Since 1950, extreme hot days and heavy precipitation have become more common

There is evidence that anthropogenic influences, including increasing atmospheric greenhouse gas concentrations, have changed these extremes

Oceanic uptake of CO₂ has resulted in acidification of the ocean

The pH of ocean surface water has decreased by o.1 (high confidence), corresponding to a 26% of increase in acidity, measured as hydrogen ion concentration

AR5 SYR; AR5 WG1 SPM.4b

Impacts are already underway

- Tropics to the poles
- On all continents and in the ocean
- Affecting rich and poor countries (but the poor are more vulnerable everywhere)

RCP Scenarios: Atmospheric CO₂ concentration

Three stabilisation scenarios: RCP 2.6 to 6 One Business-as-usual scenario: RCP 8.5

Only the lowest (RCP2.6) scenario maintains the global surface temperature increase above the pre-industrial level to less than 2°C with at least 66% probability

Temperature change North Australia annual

Projected changes in exposure to heat under a high emissions scenario (A1FI)

Sea Level

Potential Impacts of Climate Change

Food and water shortages

Increased displacement of people

Increased poverty

Coastal flooding

AR5 WGII SPM

Regional key risks and potential for risk reduction: Australasia (IPCC, AR5, SPM, Figure SPM.8)

Fig. SPM.10

Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions.

The window for action is rapidly closing

65% of the carbon budget compatible with a 2°C goal is already used NB: this is with a probability greater than 66% to stay below 2°C

NB: Emissions in 2011: 38 GtCO2/yr

AR5 WGI SPM

Stabilization of atmospheric concentrations requires moving away from the baseline – regardless of the mitigation goal.

- Can temperature rise still be kept below 1.5 or 2°C (over the 21st century) compared to pre-industrial?
- Many scenario studies confirm that it is technically and economically feasible to keep the warming below 2°C, with more than 66% probability ("likely chance"). This would imply limiting atmospheric concentrations to 450 ppm CO₂-eq by 2100.
- Such scenarios for an above 66% chance of staying below 2°C imply reducing by 40 to 70% global GHG emissions compared to 2010 by mid-century, and reach zero or negative emissions by 2100.

Mitigation Measures

More efficient use of energy

Greater use of low-carbon and no-carbon energy

Many of these technologies exist today

Improved carbon sinks

- Reduced deforestation and improved forest management and planting of new forests
- Bio-energy with carbon capture and storage

Lifestyle and behavioural changes

AR5 WGIII SPM

 Substantial reductions in emissions would require large changes in investment patterns e.g., from 2010 to 2029, in billions US dollars/year: (mean numbers rounded, IPCC AR5 WGIII Fig SPM 9)

energy efficiency: +330

renewables: + 90

power plants w/ CCS: + 40

nuclear: + 40

power plants w/o CCS: - 60

fossil fuel extraction: - 120

Example of co-benefits: health

Reduced car use in Australian cities has been shown to reduce health costs and improve productivity due to an increase in walking (Trubka et al., 2010a).

The Choices Humanity Makes Will Create Different Outcomes (and affect prospects for effective adaptation)

Change in average surface temperature (1986–2005 to 2081–2100)

AR5 WGI SPM

Useful links:

- www.ipcc.ch : IPCC (reports and videos)
- www.climate.be/vanyp : my slides and candidature to become IPCC Chair
- www.skepticalscience.com: excellent responses to climate confusers' arguments
- On Twitter: @JPvanYpersele and @IPCC_CH