Climate Change, Challenges for Science and Society, and the IPCC (Intergovernmental Panel on Climate Change)

Jean-Pascal van Ypersele IPCC Vice-Chair Twitter: @JPvanYpersele

ICTP 50th Anniversary, Trieste, 7 October 2014

Thanks to the Belgian Federal Science Policy Office (BELSPO) and to my team at the Université catholique de Louvain for their support

Climate Services and IPCC

- « Climate Services provide climate information in a way that assists decision making » (GFCS web site)
- The first climate service is the IPCC itself!

Why the IPCC (Intergovernmental Panel on Climate Change)?

Established by WMO and UNEP in 1988

to provide policy-makers with an objective source of information about

- causes of climate change,
- potential environmental and socio-economic impacts,
- possible response options (adaptation & mitigation).

WMO=World Meteorological Organization
UNEP= United Nations Environment
Programme

What is happening in the climate system?

What are the risks?

What can be done?

WG I (Physical science basis): 209 lead authors, 2014 pages, 54.677 review comments

WG II (Impacts, Adaptation and Vulnerability): 243 lead authors, 30 chapters, 50.492 review comments

WG III (Mitigation of Climate Change): 235 coordinating and lead authors, 2000 pages, 38.315 review comments

What is happening in the climate system?

Human influence on the climate system is clear.

Limiting climate change will require substantial and sustained reductions of greenhouse gas emissions.

Change in average surface temperature 1901-2012

Warming in the climate system is unequivocal -0.4 -0.2Trend (°C over period)

Plateau Glacier (1961) (Alaska)

http://www.weather.com/news/science/environment/alaskas-glaciers-capturing-earth-changing-our-eyes-20131125?cm_ven=Email&cm_cat=ENVIRONMENT_us_share

Plateau Glacier (2003) (Alaska)

http://www.weather.com/news/science/environment/alaskas-glaciers-capturing-earth-changing-our-eyes-20131125?cm_ven=Email&cm_cat=ENVIRONMENT_us_share

Change in average sea-level change

Atmospheric CO₂ concentration

Atmospheric CO₂ over the last 800000 years

U.S. Global Change Research Program: Lüthi et al.; Tans; IIASA2

A Progression of Understanding: Greater and Greater **Certainty in Attribution**

AR1 (1990): "unequivocal detection not likely for a decade"

AR2 (1995): "balance of evidence suggests discernible human influence"

AR3 (2001): "most of the warming of the past 50 years is likely (odds 2 out of 3) due to human activities"

AR4 (2007): "most of the warming is very due to greenhouse gases"

Blue zone: natural factors only

Pink zone: all factors

likely (odds 9 out of 10) AR5 (2013) «It is extremely likely (odds 95 out of 100) that human influence has been the dominant cause... »

Only the lowest (RCP2.6) scenario maintains the global surface temperature increase above the pre-industrial level to less than 2°C with at least 66% probability

Surface temperature projections

Projected Change in Precipitation

RCP2.6 (2081-2100), *likely* range: 26 to 55 cm

RCP8.5 (in 2100), *likely* range: 52 to 98 cm

(Reference level: 1986-2005)

Changes in average produce changes in probability of extremes

Box TS.5, Figure 1. Schematic showing the effect on extreme temperatures when the mean temperature increases, for a normal temperature distribution.

Since 1950, extreme hot days and heavy precipitation have become more common

There is evidence that anthropogenic influences, including increasing atmospheric greenhouse gas concentrations, have changed these extremes

What are the risks?

18-20000 years ago (Last Glacial Maximum)

With permission from Dr. S. Joussaume, in « Climat d'hier à demain », CNRS éditions.

Today, with +4-5°C globally

With permission from Dr. S. Joussaume, in « Climat d'hier à demain », CNRS éditions.

Adapted from: International Geosphere Biosphere Programme Report no.6, Global Changes of the Past, July1988

Filled symbols = Major contribution of climate change

Effects on Nile delta: 10 M people above 1m

(Time 2001)

Risk = Hazard x Vulnerability x Exposure (Katrina flood victim)

AP Photo - Lisa Krantz (http://lisakrantz.com/hurricane-katrina/zspbn1k4cn17phidupe4f9x5t1mzdr)

Level of additional risk due to climate change

Undetectable Moderate High Very high

AR5, WGII, Box SPM.1 Figure 1

What can be done?

Compatible fossil fuel emissions simulated by the CMIP5 models for the four RCP scenarios

Mitigation requires major technological and institutional changes including the upscaling of low- and zero carbon energy

Associated Upscaling of Low-Carbon Energy Supply

Substantial reductions in emissions would require large changes in investment patterns.

Other Challenges

- Fighting poverty / develop sustainably
- Powering the rise out of poverty (energy access)
- Access to clean water
- Food security
- Quality of environment (Air, water, soil,...)
- •

All sectors and regions have the potential to contribute by 2030

Note: estimates do not include non-technical options, such as lifestyle changes.

The more we wait, the more difficult it will be

Source: Meinshausen et al. - Nature, 30th April 2009

Mitigation can result in large co-benefits for human health and other societal goals. Science has a lot to offer to understand better this un-named "Party" in the climate negotiations, with whom one cannot negotiate:

The Climate System, governed by the laws of Nature

The ICTP contribution to address these challenges is most welcome

Useful links:

- <u>www.ipcc.ch</u> : IPCC
- www.climate.be/vanyp : my slides and other documents
- www.skepticalscience.com: excellent responses to contrarians arguments
- On Twitter: @JPvanYpersele